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SUMMARY

A new formulation of the Navier–Stokes equations is introduced to solve incompressible �ow prob-
lems. When �nite element methods are used under this formulation there is no need to worry whether
Babuska–Brezzi condition is satis�ed or not. Both velocity and pressure can be obtained separately and
the pressure can be simply obtained by a substitution. Moreover, fully explicit time integration can be
applied for easy implementation. Implementation issues are discussed and a couple of �ow examples are
simulated. Parallel implementation based on domain decomposition is incorporated as well. Copyright
? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Consider non-stationary Navier–Stokes equations:

ut + (u · grad)u=��u − gradp+ f (1)

div u=0 (2)

u|@� = b; u|t = 0 = a (3)
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in a bounded domain � and the time interval 06t6T . Here u(x; t) represents the velocity of
a viscous incompressible �uid �ow, p(x; t) the pressure, f the prescribed external force, a(x)
the prescribed initial velocity, and b(t) the prescribed velocity boundary values.
A huge number of methods have been proposed for the numerical solution of the problem.

Direct discretizations include �nite di�erence and �nite volume techniques on staggered grids,
mixed �nite element methods using conformal and non-conformal elements and spectral meth-
ods. Initial reformulations and/or regularizations of the equations have also been considered.
Examples of such methods include pseudo-compressibility methods, projection and pressure-
Poisson reformulations (e.g. References [1–3]). Among them, penalty method is important
since its reformulation is very simple (the calculations for u and p are separated) and ar-
ti�cial boundary values for pressure p is not required. However, an obvious drawback is
that it results in a very sti� problem and explicit time discretizations are not possible to be
used.
In References [4, 5], a sequential regularization formulation or method was proposed

and analysed. A variant of the method we are going to use can be seen as an augmented
Lagrangian (Uzawa) method applied directly to the non-stationary problem. Unlike the aug-
mented Lagrangian method theoretical justi�cation of convergence based on asymptotic ex-
pansion is done for fully non-linear Navier–Stokes equations. We are interested in using the
formulation because it keeps the bene�ts of the penalty but, unlike the penalty method, the
regularized problems are more stable or less sti�. Hence, more convenient (non-sti�) methods
can be used for time integration, i.e. fully explicit time discretizations satisfying usual time
step restrictions. This property is especially attractive when we solve non-linear problems
such as Navier–Stokes equations. Also, as indicated in Reference [5] for a simple di�er-
ence scheme, the time step restriction may be loosened in the case of small viscosity � for
the Navier–Stokes equations. Parallel implementation is also discussed and implemented in
Reference [6]. Finite element analysis of the formulation for the model of the displacement
in porous media is given in Reference [7].
In this paper we will focus on �nite element methods for solving the non-stationary

Navier–Stokes equations using this formulation. We will provide theoretical results, discuss
implementation issues and compute a few �ow problems to demonstrate the method. In a
�nite element setting of the Navier–Stokes equations the classical Galerkin/variational formu-
lation naturally gives rise to what is termed a mixed method. The success of a formulation of
this type was strongly dependent on the particular pair of velocity and pressure interpolations
(basis functions) employed. That is, the so-called Babuska–Brezzi condition has to be satis-
�ed. Double mesh implementation of such idea can be found, for example, in the review paper
[8]. Although numerous convergent combinations of velocity and pressure elements have been
developed, it may be fair to say that most, if not all, involve interpolations (basis functions)
which are inconvenient from an implementational standpoint. Three-dimensional elements are
particularly hard to pass the Babuska–Brezzi test. In Reference [9] a residual-based stable
Petrov–Galerkin formulation for the Stokes problem is presented to circumvent the condition.
Rather general C0 elements can be used in their formulation. In our sequential regularization
formulation velocity and pressure are treated separately. Any �nite element spaces can be
used to solve for the velocity under the formulation. The pressure can then be obtained by an
explicit substitution using the velocity obtained earlier. We do not need to worry beforehand
whether our elements would pass the Babaska–Brezzi test although it may be automatically
satis�ed via the formulation.
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2. THE SEQUENTIAL REGULARIZATION METHOD AND ITS CONVERGENCE

The importance of the treatment of the incompressibility constraint has long been recognized.
A classical approach is the projection method, where one has to solve a Poisson equation
for the pressure p with zero Neumann boundary condition which is, however, an unphysical
boundary condition. A reinterpretation of the projection method in the context of the so-called
pressure stabilization method or, more generally, ‘pseudo-compressibility methods’ (such as
arti�cial compressibility, penalty method, etc.) has been reviewed in Reference [3]. Our
sequential regularization formulation is based on a popular technique—Baumgarte’s stabi-
lization from di�erential-algebraic equation context (cf. References [4, 10]) combined with a
modi�ed penalty method. That is, we replace the incompressibility condition by the following:

�1(div u)t + �2 div u=0 (4)

where �1 and �2 are non-negative constants. Obviously if the initial condition satis�es div u=0
then (1) coupled with the new equation (4) would have the same solution as that of the
original Navier–Stokes equations (1)–(2). We now apply a modi�ed penalty idea to the new
equation (4) and obtain

−�(p− p0)= �1(div u)t + �2div u (5)

where � is a small penalty constant and p0 is an initial guess of the pressure, satisfying∫
� p0 dx=0. Coupled (5) with the momentum equation (1) we can solve for both u and p
and then p0 can be replaced by the newly obtained p to continue the procedure recursively.
We thus obtain the sequential regularization formulation: with p0(x; t) an initial guess (which
is usually taken as zero) and �1; �2¿0, for s=1; 2; : : : ; solve the problem

�(us)t − grad(�1(div us)t + �2div us) + �(us · grad)us
= ���us − � gradps−1 + � f (6)

us|@� = b; us|t=0 = a (7)

ps=ps−1 − 1
�
(�1(div us)t + �2div us) (8)

The sequential regularization method is related to augmented Lagrangian method (Uzawa’s
algorithm) [11, 12] and their di�erence is explained in Reference [5]. The method is a dynamic
iterative method and its convergence can be justi�ed by asymptotic expansion technique. If we
use Lp(�), or simply Lp, to denote the space of functions de�ned and pth-power integrable
in �, and

‖u‖p=
(∫

�

n∑
i=1
upi dx

)1=p

its norm, where u=(u1; : : : ; un). We denote the inner product in L2 by (·; ·). C∞ is the space
of functions continuously di�erentiable any number of times in �, and C∞

0 consists of those
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members of C∞ with compact support in �. Hm is its completion in the norm

‖u‖Hm =
( ∑
06|�|6m

‖D�u‖2
)1=2

The following convergence estimates are proved in Reference [5].

‖u − us‖H16M�s

(∫ T

0
‖p− ps‖2 dt

)1=2
6M�s

where s=1; 2; : : : . From the result we can see we only need to assume the penalty parameter
� ¡ 1 but not necessary to choose it very small since by iterations the error O(�s) can reach
any accuracy that we want. Since we can choose � not to be very small the formulation is
less sti� or more stable and thus the formulation makes it possible to have a fully explicit
time discretization (noting that if we apply a explicit discretization to the original equations
then we still need to solve a Poisson equation for pressure p thus we do not really have an
explicit discretization). From the estimate the convergence rate of the method is explicitly
given as �. We can easily control the convergence rate by choosing appropriate parameter �.

3. DISCRETIZATION AND IMPLEMENTATION ISSUES

In this paper we will use �nite element methods for spatial discretization and explicit schemes
for temporal discretization. The variational form of the regularized problem for any �xed s
can be easily formulated:
Find v∈H1 and v|x∈� = a such that

�((v)t ;w) + �1((div v)t ; divw) + �2(div v; divw) + �((v · grad)v;w)

=−��(grad v; gradw)− �(ps−1; divw) + �(f ;w) ∀w∈H1
0 (9)

where v= us for simplicity of notation. The pressure ps can be explicitly updated and com-
puted by formula (8). So any standard interpolation patterns (�nite elements) can be used
to compute v or us. There is no need to consider Babuska–Brezzi condition to match the
interpolation patterns used for the velocity and the pressure. The interpolation pattern for ps
will be automatically obtained from the interpolation pattern for v and from formula (8). We
do not need to worry if the automatically obtained interpolation pattern would satisfy the
Babuska–Brezzi condition although the condition may possibly be satis�ed under the formu-
lation.
From now on we will always take �1 = 0 (and �2 = 1 without loss of generality). It will

make the formulation simple. In this case the sequential regularization formulation can be
seen as an augmented Lagrangian method (Uzawa’s algorithm) applied directly to the non-
stationary fully non-linear problem without linearization. Only in this case a fully explicit
time discretization is possible.
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Figure 1. Implementation of the SRM using the forward Euler scheme.

Below we will describe the method using two-dimensional terms. There is certainly no
problem to use it to higher dimensional cases. Let h ¿ 0 be the mesh size of a �nite de-
composition of the domain �. We introduce a standard �nite element space Wh ⊂ H1

0 for
Galerkin methods associated with a quasi-regular subdivision of � into triangles or rectangles
of diameter less than h. Concretely, let �h= {�hi }Ni=1 be a �nite decomposition of � into a
family of edge-to-edge triangles or quadrilaterals of �h ⊆� with the parameter h ≈ N−1=2 uni-
formly comparable to maxi(diam(�hi )) and with diam(�

h
i )6K1h6K2�(�

h
i ), where �(�) denotes

the diameter of the largest inscribed disc of �, and

Wh= {w∈C0;w=0 on @�; w|�hi polynomials of degree6k}

Given a partition of [0; T ]; 0= t0 ¡ t1 ¡ · · · ¡ tN =T , we denote �tn= tn+1 − tn; and for
simplicity let �tn=�t be a constant. Let {Pns ;Vn} be the approximation of {ps; v} at time
level tn.
We have indicated that simple explicit time discretizations can be used to make the com-

putation and its programming easier. Let us just use forward Euler scheme (higher order
explicit schemes can be used as well to obtain better accuracy and less time step restriction
associated with the explicit scheme) and de�ne the full approximation scheme (combined the
Euler scheme with the standard Galerkin method) at time tn(n=0; 1; 2; : : :) by the following.
Given any initial guess Pn0 ; n=0; 1; : : : ; N . For s=1; 2; : : : ; iteratively obtain

{Vn; Pns } ≡ {Uns ; Pns }; n=0; 1; : : : ; N
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1174 P. LIN, X. CHEN AND M. T. ONG

0 50 100 150 200

−20

0

20

40

60

80

100

120

140

Figure 2. Streamline of the channel �ow with a cave at t=60.
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Figure 3. Streamline of the channel �ow with a reduced upper channel height of 0.5 at t=60.

Concretely, at the sth SRM iteration (Pns−1; n=0; 1; : : : ; N are known at this iteration), starting
from the initial values V0, �nd Vn+1 ∈Wh such that

(
Vn+1 −Vn

�t
;w
)
+
1
�
(divVn; divw) + (Vn · grad)Vn;w)

=−�(gradVn; gradw)− (Pns−1; divw) + (fn;w) ∀w∈Wh (10)
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Figure 4. Streamline of the channel jet at t=0:1.
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Figure 5. Streamline of the channel jet at t=1:0:

and then obtain Pns by the direct substitution:

Pns =P
n
s−1 − 1

�
divVn (11)

for n=0; 1; : : : ; N − 1.
We call the above procedure a complete explicit procedure because in other formulations

of incompressible Navier–Stokes equations a linear system arising from the pressure Poisson
equation has to be solved even if an explicit temporal scheme is used. Of course, in the case
of high Reynolds number, streamline di�usion �nite element term or other type of stabilization
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Figure 6. Streamline of the channel jet at t=2:9.
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Figure 7. Horizontal velocity of the channel jet at t=0:1.

term should be added to deal with the dominant convection term in order to achieve stability
(cf. Reference [13]). Our computational experience shows that usually four or �ve iterations
would be enough for �=0:5.
The order of the sequential regularization iteration is: starting from s=0 (i.e. given initial

guess Pn0 for all tn ∈ [0; T ]), �nd Un1; Pn1 for all tn ∈ [0; T ], then �nd Un2; Pn2 for all n, etc. That
is, to compute Uns ; Pns at the current iteration s we need to store Uns−1; P

n
s−1 at the previous

iteration s − 1 for all time n. Since usually time step size is small and the number of time
steps would be huge. It is not realistic to store all values of Uns−1; P

n
s−1; n=0; 1; 2; : : : in order

to compute the current iteration Uns ; Pns . In the sequential regularization method because the
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Figure 8. Vertical velocity of the channel jet at t=0:1.

number of iterations is �xed (usually four or �ve) and is determined in advance (according
to the accuracy of the discretization used) we can design an order of the iterations to avoid
this large storage problem. In Figure 1 the implementation order of the SRM is depicted for
forward Euler time discretization. Similar diagram can be drawn for other explicit schemes.
From the diagram we see that our implementation can go (dotted) box by (dotted) box in
the temporal direction. Since we usually do four or �ve iterations we only need to store four
or �ve values of Uns and Pns in the algorithm.

4. NUMERICAL SIMULATION OF SOME INCOMPRESSIBLE VISCOUS FLOWS

The main goal of this section is to present the results of numerical experiments concerning
the simulation of two-dimensional incompressible viscous �ows.
The �rst example is a channel �ow with a cave. The �ow domain � is a rectangular

channel plus a square cave as shown in the following diagram. We assume that the

du/dx = 0.0

dv/dx = 0.0

1.0

1.25 1.25

 2.0

1.0

region I region II region III

�uid viscosity � is equal to 1
100 and that the �uid is at rest at time t=0, that is, u(x; 0)= 0, for

all x∈�. The in�ow pro�le is parabolic u=(y(1−y); 0)T. The out�ow boundary condition is
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Figure 9. Pressure of the channel jet at t=0:1.
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Figure 10. Horizontal velocity of the channel jet at t=2:9.

@u=@x=0. On the other boundaries u=0. We have divided the domain to three subdomains
I–III where two processors are assigned to subdomains I and III and four processors are
assigned to subdomain II for parallel implementation. We take piecewise linear interpolation
on a uniform triangular grid with hx= hy= 1

64 (which is equivalent to certain �nite di�erence
discretization) and temporal step size �t=2×10−5. The penalty parameter �=0:5 and do four
sequential regularization iterations. In Figure 2 we depict the streamline of the solution after
three million time steps (reaching steady-state). We also calculate the case where the upper
channel boundary moves down to be close to the cave. The computational result is depicted
in Figure 3. We see that more interaction takes place between the �ow in the channel and
the �ow inside the cave.
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Figure 11. Vertical velocity of the channel jet at t=2:9.
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Figure 12. Pressure of the channel jet at t=2:9.

The second example is a channel jet �ow. The �ow domain � is a rectangle. We assume
that the �uid viscosity �= 1

2000 , that the �uid is at rest at time t=0, and that the jet aperture is
located on the left vertical line, is centred at the middle and is 1

16 wide. We suppose also that
the jet pro�le is parabolic, with a maximal velocity equal to 1, the jet being horizontal. The
velocity at the out�ow boundary is zero in the vertical direction and zero normal derivative at
the horizontal direction. The velocity at other boundaries is zero. We use again the piecewise
linear interpolation on a uniform triangular grid combined with the forward Euler explicit
temporal discretization. hx= hy= 1

50 and �t=5× 10−5. We also tried �ner spatial grids and
see no signi�cant di�erence from the results.
In Figures 4–6 we depict streamlines of the channel jet �ow at di�erent times. When t=2:9

the jet is close to the right arti�cial boundary and some non-symmetry starts to develop. Longer
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domain is needed to simulate the channel jet �ow further. In Figures 7–12 we show velocity
and pressure surface at t=0:1 and 2:9.
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